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Abstract. We reconsider the semiconductor trions from scratch. We first determine the very many “rea-
sonable” ways to write the trions in first quantization. We then select the forms which are easy to relate to
physical pictures. In a second part, we derive the corresponding creation operators in second quantization.
We pay particular attention to the expression of the X− trion in terms of exciton and free-electron, as it
is the one adapted to future works on many-body effects with trions.

PACS. 71.35.-y Excitons and related phenomena

In semiconductor physics, we call X− trions [1-7] the
bound states of two electrons and one hole, so that these
X− trions may be seen as the bound states of one exci-
ton and one electron. In a similar way, the X+ trions are
the bound states of two holes and one electron, so that
they can be seen as an exciton with a hole bound to it.
Except for their effective masses and dielectric constant,
these trions are essentially the same as the H− or H+

2 ions
studied long ago in atomic physics. Due to the extremely
high experimental accuracy usually reached in this field,
various very elaborate numerical methods [8] have been
developed to obtain the bound states energies of these
H− or H+

2 ions with up to 10 digits, an amazing — and
useless — precision in solid state physics.

Although their existence was predicted for a long
time [1], clear experimental evidences of X− or X+ trions
in semiconductors have been obtained recently only [9–12]:
Due to their very small binding energies in bulk materials,
the X− trions are in fact dissociated into electron and ex-
citon in usual experimental conditions. The development
of good semiconductor quantum wells made however pos-
sible the observation of these trions, as the reduction of
dimensionality enhances the absolute values of all bind-
ing energies. In more recent experiments, the interaction
of these trions with carriers has been studied in highly
doped materials [13–15], and the observed phenomenon
has been associated to the excitonic Fermi edge singular-
ities predicted long ago [16].

To our opinion, a clean treatment of this last problem
is extremely difficult and the full answer not yet given.
With this goal in mind, the present paper constitutes the
first step towards a new approach to this problem, the
trion being inserted in the more general framework of an
exciton interacting with other carriers.
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In recent works [17–19], we have studied the simplest of
these problems, namely the interaction of an exciton with
an electron gas located in a distant metal. We predicted
changes of the exciton absorption lines when this exciton
is created close to a metal. These changes, which include
shifts, asymmetric broadenings and splittings, have simi-
larities with Fermi edge singularities. They come from the
sudden Coulomb interactions between the electron and
hole of the photocreated exciton and the various electrons
of the metal, these electrons being distinguishable from
the electron of the exciton as they are spacially separated.

The problem is much more complex when the elec-
tron of the photocreated exciton and the electrons already
present are indistinguishable, which is what happens when
we study the interactions between various excitons or be-
tween one exciton and a sea of electrons around it, as for a
trion in doped materials. The major difficulty comes from
the indistinguishability of the carriers, and its straightfor-
ward consequence that there are a priori various ways to
choose the electron possibly bound to the hole to make
the exciton. Up to now, it has been commonly accepted
that, in order to include this indistinguishability, which
is at the origin of the close-to-boson character of the ex-
citons, it is enough to dress the Coulomb interaction by
so-called exchange processes [20]. However this idea, at
the origin of all bosonisation procedures [21] which tend
to replace the exact semiconductor Hamiltonian by an ef-
fective Hamiltonian for boson-excitons, fails to produce
purely fermionic contributions. These terms have to exist
independently from any Coulomb process. A very intu-
itive way to grasp this point is to say that excitons in-
teract because they “feel” each other. The existence of
Coulomb forces is of course an obvious way for two ex-
citons to feel each other. A less obvious one is Pauli ex-
clusion: the two electrons of two excitons having to be in
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different states, this induces an “interaction” between ex-
citons, which has to appear, even in the absence of any
Coulomb force. This Pauli way for two excitons to “feel”
each other is the extremely tricky part of all problems
dealing with interacting excitons. In recent works [22,23],
we have shown that the effective exciton-exciton scatter-
ing found 30 years ago and reported by everyone up to
now [20], cannot be correct because it induces an effective
boson-exciton Hamiltonian which is not hermitian. Very
recently, we have even shown [24] that the concept of ef-
fective Hamiltonian itself has to be abandoned because,
whatever the exciton-exciton scattering is, it cannot re-
produce the X-X correlations correctly.

In the exciton-exciton interaction, Pauli exclusion be-
tween electrons and Pauli exclusion between holes both
enter. In view of the complexity of the consequences of
these Pauli exclusions, which are at the origin of all the
incorrect results published in the literature on interacting
excitons, it may appear as reasonable to study the sim-
plest situation first, namely one exciton interacting with
N other electrons, as only Pauli exclusion between elec-
trons have then to play a rôle. Inside this type of problems,
the case N = 1 is clearly the simplest one. This is just the
trion problem: We only have three particles with Coulomb
interactions between them. The problems linked to the in-
distinguishability of the two electrons nevertheless exist in
the trion and have to be handled properly.

The purpose of this paper is not to find a new way
to derive precise values of the trion binding energy: The
wide literature of atomic physics already provides much
more accuracy than needed in any precise semiconduc-
tor experiment. However, as most of these works have in
mind a fast numerical convergence in the resolution of the
trion Schrödinger equation, their approaches to the trion
problem cannot be extended to the interactions of a trion
with other carriers. As an example, in his pioneer work [1],
Hylleraas uses an expansion in terms of the three param-
eters u = |re − re′ |, s = |re|+ |re′ | and t = |re| − |re′ |; the
two last ones are obviously hard to relate to any mean-
ingful quantity and, far worse, to extend to problems with
one hole plus three, four, five. . . electrons.

What we want to do here, is to provide tools for the
extension of the trion problem to more complex situations.
We have in fact in mind to do for trions something similar
to what has been done for excitons: Beside the determi-
nation of the exciton eigenstates through the resolution of
the hydrogen-like Schrödinger equation, which can be an-
alytical in this case, as it reads in terms of hypergeometric
functions [25], the excitons have been shown to be specific
linear combinations of electrons and holes.This view of an
exciton turns out to be the convenient one for many-body
effects involving excitons, mostly when this linear combi-
nation is written in second quantization.

The trion is actually far more complex than the ex-
citon. In addition to the fact that the trion eigenstates
are not analytically known, the trion has an intrinsic diffi-
culty which comes from the fact that there are very many
possible ways to represent it as shown below. This leaves
a certain freedom in choosing the “best” approaches to a

given problem on trions. In order to settle future works
with interacting trions on solid grounds, it appeared to us
quite useful to reconsider the trion problem from scratch.

Section 1 deals with the X− trion in first quantization.
We show that there are a priori various “good” ways to
choose the three spatial coordinates of the trion. Surpris-
ingly enough, the most symmetrical one with respect to
the two electrons turns out to be a very bad choice for
physical understanding. We also pay particular attention
to the consequences of the symmetry condition induced by
Pauli exclusion between the two electrons, and we show
that, depending on the chosen set of coordinates, some of
them are physically totally obscure.

In Section 2, we derive the trion creation operators
in second quantization. Here again, various creation op-
erators are possible. We give two possible expressions for
these trion operators in terms of two electrons and one
hole, and two expressions of these operators in terms of
one exciton and one electron. These last representations
are in fact the convenient ones to study one trion in doped
materials, as they relate this problem to the more gen-
eral one of an exciton in the presence of other carriers,
with Pauli exclusion between them (and all the complex-
ities associated to it). We also show that the invariance
conditions coming from the symmetry of the trion wave
function, which appeared as totally obscure in first quan-
tization, simply correspond to have the prefactors of these
linear combinations invariant under the anticommutation
of the two electron operators, as expected for fermions.

This paper is rather formal as its goal is to settle firm
basis for future works on interacting trions. The space di-
mension remains undefined, the equations being valid for
bulk semiconductors as well as quantum wells, the car-
rier or exciton momenta being 3D vectors for bulk and
2D vectors for quantum wells, while the exciton relative
motion index ν is a 3-component index for bulk and a
2-component index for quantum wells.

The level of approximations used in this work on trions
is the one which leads to write the exciton Hamiltonian as

H =
p2

e

2me
+

p2
h

2mh
− e2

reh
· (1)

It in particular neglects all the complexities of the valence
band by assuming one hole mass only. This is a priori
valid for narrow quantum wells as the heavy and light
hole bands are usually well separated in energy by the con-
finement. On the opposite, this is more questionable for
bulk materials. However, the introduction of heavy and
light holes goes with the introduction of a non-diagonal
Coulomb interaction between them [26], which makes all
many-body effects far more complex. The Hamiltonian (1)
also neglects “electron-hole exchange”, i.e., the possible
Coulomb scatterings between the valence and the conduc-
tion bands: The electrons and the holes are thus assumed
to be unrelated species. This electron-hole exchange is
known to have a small effect on excitons, as it induces
a splitting of the degenerate exciton level, since it differ-
entiates the exciton with spin such that this electron-hole
exchange is possible from the other one. The introduction
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of electron-hole exchange in the trion problem is far be-
yond the scope of this preliminary work.

1 The X− trion in first quantization

1.1 The various “reasonable” choices of carrier
coordinates

In first quantization, the X− trion wave function can be di-
vided into an orbital part and a spin part. The orbital part
is eigenfunction of the semiconductor Hamiltonian which
depends on the positions of the two electrons and the hole.
They can appear either as (re, re′ , rh) or as three linear
combinations of these quantities. In terms of (re, re′ , rh),
the equivalent of the exciton Hamiltonian given in equa-
tion (1) reads

H =
p2

re

2me
+

p2
re′

2me
+

p2
rh

2mh
+

e2

|re − re′ |−
e2

|re − rh|−
e2

|re′ − rh| ·
(2)

Being invariant under (re ↔ re′ ), the eigenfunctions of
this Hamiltonian have a given parity with respect to the
(re ↔ re′) interchange. However, as the electrons are
fermions, the total trion wave functions must be antisym-
metrical with respect to the (e ↔ e′) interchange. It is
thus appropriate to have appearing in the spin part, the
total electron spin (S = 1, Sz = 0,±1) or (S = 0 = Sz)
instead of the individual spins (se = ±1/2, se′ = ±1/2),
as the triplet is symmetrical with respect to the (e ↔ e′)
interchange while the singlet is antisymmetrical. Conse-
quently we are led to write the trion wave function as

Ψ (i)(re, re′ , rh)|Si, Siz〉 ⊗ |mi〉, (3)

where mi is the hole kinetic momentum. For quantum
wells in which only the heavy band plays a role, mi =
±3/2, while for bulk materials, mi = ±3/2,±1/2. The
orbital part then verifies

HΨ (i) = EiΨ
(i), (4)

the symmetry imposed by Pauli exclusion leading to

Ψ (i)(re, re′ , rh) = (−1)SiΨ (i)(re′ , re, rh). (5)

a) Carrier coordinates (re, re′ , rh)

In order to solve the Schrödinger equation (4), the
most simple-minded idea is to expand the H eigenfunc-
tions on the plane wave basis for (re, re′ , rh) functions,
namely

Ψ (i)(re, re′ , rh) =
∑

ke,ke′ ,kh

Ψ̄
(i)
ke,ke′ ,kh

eike·re

√V
eike′ ·re′√V

eikh·rh

√V ,

(6)

where V is the sample volume. If we insert this expansion
into equation (4), we find that the Ψ̄

(i)
ke,ke′ ,kh

’s verify

0 = [εe(ke) + εe(ke′) + εh(kh) − Ei] Ψ̄
(i)
ke,ke′ ,kh

+
∑
q

Vq

(
Ψ̄

(i)
ke+q,ke′−q,kh

− Ψ̄
(i)
ke+q,ke′ ,kh−q − Ψ̄

(i)
ke,ke′+q,kh−q

)
, (7)

where we have set εe,h(k) = �
2k2

2me,h
. The three terms of

the sum over q correspond to the Coulomb interactions
between the three carriers. The Ψ̄

(i)
ke,ke′ ,kh

’s which have the
symmetry property imposed by Pauli exclusion (Eq. (5)),
are such that

Ψ̄
(i)
ke,ke′ ,kh

= (−1)Si Ψ̄
(i)
ke′ ,ke,kh

, (8)

while they should be such that

∑
ke,ke′ ,kh

∣∣∣Ψ̄ (i)
ke,ke′ ,kh

∣∣∣2 = 1, (9)

for the wave function Ψ (i)(re, re′ , rh) to be normalized.
b) Introduction of the trion center of mass Rt

It is however physically obvious that the (re, re′ , rh)
variables are not the good variables of the trion problem:
The trion center of mass,

Rt =
mere + mere′ + mhrh

2me + mh
, (10)

is surely playing an important rôle. In order to make this
Rt coordinate appearing, we must replace the three coor-
dinates (re, re′ , rh) of the trion carriers by three other co-
ordinates (Rt, r1, r2) which have to fulfil certain relations,
given below in equations (12, 14), in order to be “good”
coordinates. Let us write these two new coordinates as

r1 = are + a′re′ + a′′rh

r2 = bre + b′re′ + b′′rh . (11)

By enforcing the center of mass momentum operator,

PRt = (2me + mh)Ṙt = pre + pre′ + prh
,

to commute with r1 and r2,

[r1,PRt ] = [r2,PRt ] = 0 , (12)

we get
a + a′ + a′′ = 0 = b + b′ + b′′ . (13)

If, in addition, we enforce the momentum operators asso-
ciated to r1 and r2, namely pr1 = µ1ṙ1 and pr2 = µ2ṙ2

(with the effective masses µ1 and µ2 yet undefined) to be
such that

[r1,pr2 ] = [r2,pr1 ] = 0, (14)
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we get another relation

ab + a′b′

me
+

(a + a′)(b + b′)
mh

= 0 . (15)

Note that this relation is independent of the masses µ1

and µ2 chosen to define pr1 and pr2 . With equations (13)
and (15), there are still very many ways to choose the two
coordinates (r1, r2).
c) A choice of coordinates symmetrical
with respect to (e ↔ e′)

In view of the symmetry property of the wave function,
equation (5), we may think appropriate to use for the two
new coordinates, quantities in which (re, re′) play similar
rôles [27]. This leads to use r± defined as

r± =
1 ± η

2
(re − rh) +

1 ∓ η

2
(re′ − rh). (16)

In order to fulfil the conditions (13, 15) between the com-
ponents of (r+, r−), we find that the parameter η must be
equal to [(2me + mh)/mh]1/2.

Although this symmetrical choice may be appealing at
first, it is hard to give any physical meaning to η. More-
over, these variables r± are also hard to extend to the
problem of a trion interacting with an electron gas (i.e.
one hole and N electrons), problem we have in mind as a
future extension of this work.
d) Choice of coordinates appropriate to physical
understanding

On that respect, the coordinates which are easy to un-
derstand physically, and which turn out to be quite ap-
propriate for the formulation of the interaction of a trion
with other electrons, correspond to take a′ = 0 (or b′ = 0).
By choosing a = 1, which is just a rescaling of r, the co-
ordinates (r1, r2) which fulfil equations (13) and (15) are
either (r,u′) or (r′,u) with [28]

r = re − rh

u′ = re′ − mere + mhrh

me + mh
, (17)

(r′,u) being obtained from equation (17) by interchang-
ing re and re′ . Note that, by choosing a = 1, these new
coordinates are such that dre dre′ drh = dRt drdu′.

For physical understanding, we can note that r is the
distance between (e, h) while u′ is the distance between e′
and the center of mass of (e, h) (see Fig. 1). In terms of
(r,u′), the two other distances between the X− carriers are

re′ − re = u′ − αhr

re′ − rh = u′ + αer = r′ , (18)

with αe,h = me,h/(me + mh). In the following, it will be
useful to note that the two couples of coordinates (r,u′)
and (r′,u) are related by

r′ = u′ + αer
u = r − αe(u′ + αer) , (19)

Fig. 1. The trion variables (r, u′) and (r′,u) as defined in
equation (17). r is the distance between e and h, while u′ is
the distance between e′ and the center of mass of (e, h).

while (re, re′ , rh) read in terms of (Rt, r,u′) as

re = Rt + αhr − βeu′

re′ = Rt + βxu′

rh = Rt − αer − βeu′ , (20)

where βe,h = me,h/(2me + mh) and βx = (me +
mh)/(2me+mh). For physical understanding, we can note
that, as αe and αh are the reduced electron and hole
masses of the exciton, βe and βh are the reduced elec-
tron and hole masses of the trion, while βx is the reduced
exciton mass.

The masses associated to the (r,u′) coordinates, and
which enter the definition of the momenta pr and pu′ , can
be obtained by enforcing

[r,pr] = [u′,pu′ ] = i�. (21)

This gives for the mass associated to r, the mass of
the (e, h) relative motion, namely

1
µx

=
1

me
+

1
mh

· (22)

It is just the exciton relative motion mass. In a similar
way, the mass associated to u′ is nothing but the mass
for the relative motion of the electron e′ and the center of
mass of the (e, h) pair, namely

1
µt

=
1

me
+

1
me + mh

· (23)

It is thus the trion relative motion mas.
It is then easy to check that the H Hamiltonian given

in equation (2) can be rewritten in terms of these new
coordinates as

H =
P2

Rt

2(2me + mh)
+ hr,u′ =

P2
Rt

2(2me + mh)
+ hr′,u· (24)

The quantity hr,u′ appears as the Hamiltonian for the X−
trion relative motion. It precisely reads

hr,u′ = hr +
p2

u′

2µt
+ v(r,u′), (25)

where hr is the relative motion Hamiltonian of the (e, h)
exciton,

hr =
p2

r

2µx
− e2

r
, (26)
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while v(r,u′) is nothing but the Coulomb interaction be-
tween the e′ electron and the (e, h) pair (see Eq. (18)),

v(r,u′) =
e2

|u′ − αhr| −
e2

|u′ + αer| · (27)

Note that, by enforcing “good” coordinates, through the
commutation rules given in equations (12, 14), we have no
crossed kinetic terms in p.p′, as found in some papers on
trions.

1.2 Trion relative motion

In view of the X− trion Hamiltonian given in equa-
tion (24), we are led to isolate the center of mass motion
and write the trion wave function as

Ψ (i)(re, re′ , rh) =
eiKi·Rt

√V Φ(ηi)(r,u′), (28)

with Φ(ηi)(r,u′) solution of

(hr,u′ − εηi) Φ(ηi)(r,u′) = 0, (29)

the energy εηi being the trion relative motion energy,

Ei = εηi +
�

2K2
i

2(2me + mh)
· (30)

In the following, the trion index (i) will stand for (ηi,Ki).
Within these variables, the symmetry of the wave function
with respect to (re ↔ re′ ) imposes

Φ(ηi)(r,u′) = (−1)SiΦ(ηi)(r′,u)

= (−1)SiΦ(ηi)(u′ + αer, r − αe(u′ + αer)),
(31)

which follows from equation (19). While easy to derive,
the above invariance would be hard to guess!
a) The most näıve trion relative motion wave func-
tion

In order to determine the Φ(ηi)(r,u′)’s solutions of
equation (29), the first idea can be to expand them on a
plane wave basis for (r,u′) functions. This leads to write
Φ(ηi)(r,u′) as

Φ(ηi)(r,u′) =
∑
k,p

Φ̄
(ηi)
k,p

eik·r
√V

eip·u′

√V , (32)

see Figure 2b. By inserting this expansion into the
Schrödinger equation (29), we find that the Φ̄

(ηi)
k,p ’s must

verify

0 =
(

�
2k2

2µx
+

�
2p2

2µt
− εηi

)
Φ̄

(ηi)
k,p

+
∑
q

Vq

(
Φ̄

(ηi)
k−αhq,p+q − Φ̄

(ηi)
k+αeq,p+q − Φ̄

(ηi)
k+q,p

)
, (33)

Fig. 2. Some possible representations of the trions in terms
of two electrons and one hole ((a) and (b)), or in terms of one
electron and one exciton ((c) and (d)).

the three terms of the sum over q coming from the (e, e′),
(e, h) and (e′, h) Coulomb interactions.

Due to equation (19), we have

eik·r′ eip·u = ei(p+αe(k−αep))·r ei(k−αep)·u′
, (34)

so that the symmetry condition on (r,u′) ↔ (r′,u) re-
sulting from Pauli exclusion, as given in equation (31),
imposes

Φ̄
(ηi)
k,p = (−1)SiΦ̄

(ηi)
p+αe(k−αep),k−αep

. (35)

By comparing equation (6) with equation (28, 32), we
can relate Φ̄(ηi) to Ψ̄ (i) through

Φ̄
(ηi)
k,p = Ψ̄

(i)
k−αep+βeKi,p+βeKi,−k−αhp+βhKi

, (36)

see Figures (2a, b). From the above equation and equa-
tion (35), it is indeed possible to recover the (e ↔ e′)
symmetry condition (8). However except from their pedes-
trian derivations, the two above equations would be hard
to trust.
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b) Our best choice
In view of the precise form of the Hamiltonian hr,u′

given in equation (25), it may appear as a better idea to
use the ϕν(r) = 〈r|xν 〉 eigenstates of hr as a basis for the r
part of the Φ(ηi)(r,u′) functions. This leads to write these
functions as

Φ(ηi)(r,u′) =
∑
ν,p

Φ̃(ηi)
ν,p ϕν(r)

eip·u′

√V , (37)

(see Fig. 2c). By inserting this expansion into equa-
tion (29), we find that the Φ̃

(ηi)
ν,p ’s must verify

[
εν +

�
2p2

2µt
− εηi

]
Φ̃(ηi)

ν,p +
∑
ν′,q

Vqγνν′(q) Φ̃
(ηi)
ν′,p+q = 0,

(38)
where we have set

γνν′(q) = 〈xν |eiαhq·r − e−iαeq·r|xν′〉. (39)

The equation verified by Φ̃
(ηi)
ν,p has now one coupling

term only, instead of three as in the previous procedures,
Vqγνν′(q) being the Fourier transform of the potential

vνν′(u′) = 〈xν |v(r,u′)|xν′〉, (40)

which scatters the ν′ exciton to a ν state, while a p + q
electron is scattered into a p state.

The quantity γνν′(q) already appeared in our com-
mutation technique for interacting close-to-boson exci-
tons [22,23]. It was associated to the scattering of a ν′
exciton into a ν state under a q Coulomb excitation, mak-
ing the exciton center of mass momentum going from Q
to Q + q. In the trion problem, the exciton-electron state
(ν′,p + q) is scattered into the (ν,p) state due to the
Coulomb interaction v(r,u′) between the e′ electron and
the (e, h) exciton. As the trion total momentum Ki stays
constant under this coupling, when the e′ electron changes
its momentum from p + q to p, the (e, h) exciton has to
change its center of mass momentum from Q to Q + q,
while its relative motion goes from ν′ to ν. Consequently,
the γνν′(q) scattering has indeed to appear in the scatter-
ing of the (ν′,p + q) state into the (ν,p) state.

If we expand ϕν(r′) on plane waves and use equa-
tion (34), we find

ϕν(r′)eip·u =
∑
k

〈r′|k〉 〈k|xν 〉 eip·u

=
∑
p′

〈r|p + αep′〉 〈p′ + αep|xν〉 eip′·u′
, (41)

so that

ϕν(r′) eip·u =∑
ν′,p′

〈xν′ |p + αep′〉 〈p′ + αep|xν〉ϕν′(r) eip′·u′
. (42)

From this equation, it is then easy to show that the sym-
metry condition (Eq. (31)) on the (re, re′ ) coordinates im-
posed by Pauli exclusion leads to

Φ̃(ηi)
ν,p = (−1)Si

∑
ν′,p′

〈xν |p′ + αep〉 〈p + αep′|xν′〉 Φ̃
(ηi)
ν′,p′ .

(43)
If we compare equation (32) to equation (37), we find

that Φ̄(ηi) and Φ̃(ηi) are related by

Φ̃(ηi)
ν,p =

∑
k

〈xν |k〉 Φ̄
(ηi)
k,p (44)

Φ̄
(ηi)
k,p =

∑
ν

〈k|xν 〉 Φ̃(ηi)
ν,p . (45)

By using the above equations, it is possible to recover
equation (43) directly from equation (35).

1.3 Trions in terms of exciton and free electron

For further works on interacting trions, it will be useful to
note that equations (28, 37) lead to

Ψ (i)(re, re′ , rh) =
∑

ν,p,Ki

Φ̃(ηi)
ν,p

ei(p+βeKi)·re′√V

× ϕν(re − rh)
ei(−p+βxKi)(αere+αhrh)

√V , (46)

so that it is possible to write the trion wave function as a
product of an exciton and a free electron wave functions
through

Ψ (i)(re, re′ , rh) =
∑
n,k

Ψ̃
(i)
n,k φn(re, rh)

eik·re′√V , (47)

(see Fig. 2d), where φn(re, rh) is the n exciton total wave
function, n standing for (νn,Qn). Due to equation (46),
the prefactors Ψ̃ are equal to

Ψ̃
(i)
n,k = Φ̃

(ηi)
νn,k−βeKi

δKi,k+Qn . (48)

From the Schrödinger equation (38) verified by Φ̃
(ηi)
ν,p ,

we can deduce the Schrödinger equation verified by Ψ̃
(i)
n,k.

It reads

(En + εe(k) − Ei) Ψ̃
(i)
n,k

+
∑
n′,k′

δQn′+k′,Qn+k VQn−Qn′ γνnνn′ (Qn−Qn′) Ψ̃
(i)
n′,k′ = 0,

(49)

where En = ενn + �
2Q2

n/2(me + mh) is the n exciton
energy, and Ei = εηi + �

2K2
i /2(2me + mh) is the i trion

energy [29].
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Using equations (43, 48), the (re ↔ re′ ) symmetry
imposed by Pauli exclusion now leads to

Ψ̃
(i)
n,k = (−1)Si

×
∑
n′,k′

δk+Qn,k′+Qn′ 〈xνn |k′−αeQn〉〈k−αeQn′ |xνn′ 〉Ψ̃ (i)
n′,k′ .

(50)

While the consequences of Pauli exclusion on the (e ↔
e′) symmetry are rather simple on the Ψ̄

(i)
ke,ke′ ,kh

’s (see

Eq. (8)), they are less clear on the Φ̄
(ηi)
k,p ’s (see Eq. (35)),

and completely obscure on the Φ̃
(ηi)
ν,p ’s and Ψ̃

(i)
n,k’s (see

Eqs. (43, 50)). In the next paragraph, we are going to
show, using the second quantization, how these conditions
can in fact appear in a quite transparent way. This under-
standing is in fact of importance, as the representation of
the trion in terms of exciton and electron is the good one
for future works on many-body effects with trions.

2 The X− trion in second quantization

In second quantization, the trions appear through trion
creation operators T †

i . They are such that〈
re, re′ , rh|T †

i |v
〉

(51)

corresponds to the X− trion wave function given in equa-
tion (3), |v > being the electron-hole vacuum state. We
are now going to derive the four formulations of these trion
operators which correspond to the four forms of the orbital
wave functions given in equation (6), equations (28, 32),
equations (28, 37) and equation (47).

2.1 First formulation of the X− trion operator in terms
of two electrons and one hole

Let us first consider the X− trion operators which corre-
spond to an electron total spin (Si = 1, Siz = ±1) so that
its two electrons have the same spin ±1/2. In this case,
the X− trion operator simply reads (see Fig. 2a),

T †
i;Si=1,Siz=±1,mi

=
1√
2

∑
ke,ke′ ,kh

Ψ̄
(i)
ke,ke′ ,kh

a†
ke,±a†

ke′ ,±, b†kh,mi
. (52)

Indeed using the symmetry condition (Eq. (8)) for the
Ψ̄

(i)
ke,ke′ ,kh

’s of Si = 1 trions, and the relation

〈
re, re′ |a†

ke,sa
†
ke′ ,s′ |v

〉
=

1√
2

[
eike·re

√V
eike′ .re′√V |s, s′〉 − eike′ ·re

√V
eike·re′√V |s′, s〉

]
, (53)

Fig. 3. The invariance relations (8) and (35) come from the
possible exchange of the two electrons.

it is straightforward to check that this T †
i operator in-

serted in equation (51) just gives the orbital part of the
wave function appearing in equation (6). In a similar way,
we can check that when the electron total spin of the trion
Siz is zero, the X− trion operator is given by

T †
i;Si=(0,1),Siz=0,mi

=
1√
2

∑
ke,ke′ ,kh

Ψ̄
(i)
ke,ke′ ,kh

×
(

(a†
ke,+ a†

ke′ ,− − (−1)Si a†
ke,− a†

ke′ ,+√
2

)
b†kh,mi

. (54)

Let us note that the Pauli exclusion condition (5), en-
forced on the Ψ̄

(i)
ke,ke′ ,kh

’s through equation (8), just cor-
responds to have the prefactors of equation (52) or (54)
unchanged with respect to the possible anticommutation
of the two a† operators (see Fig. 3a). Indeed, equation (52)
gives

T †
i;Si=1,Siz=±1,mi

=

− 1√
2

∑
ke,ke′ ,kh

Ψ̄
(i)
ke,ke′ ,kh

a†
ke′ ,±a†

ke,±b†kh,mi
, (55)

which is identical to equation (52) provided that the
Ψ̄

(i)
ke,ke′ ,kh

’s verify equation (8). This is also true for Siz = 0
trions.

2.2 Second formulation of the X− trion operator
in terms of two electrons and one hole

We now turn to the X− trion operators which generate the
trion wave functions given in equations (28, 32), with the
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trion center of mass momentum Ki appearing explicitly.
Let us first give their expressions (see Fig. 2b),

T †
ηi,Ki;Si=1,Siz=±1,mi

=
1√
2

∑
k,p

Φ̄
(ηi)
k,p a†

p+βeKi,± a†
k−αep+βeKi,± b†−k−αhp+βhKi,mi

,

(56)

with expresssions similar to equation (54) for Siz = 0
trions. These expressions can be checked by a brute force
calculation relying on equation (53). Although the carrier
momenta have some similarity with the ones appearing in
equation (36), these forms may appear as far from obvious
at first. Let us briefly outline how we can derive them from
scratch. We will only consider Si = 1 = Siz trions, for
simplicity.

The expression of the trion wave function given in
equation (28) makes the trion center of mass appearing
as one of the three coordinates of the trion. Associated
to it, is the trion total momentum Ki. We are thus led
to look for the trion operator as a linear combination of
a†
ke

a†
ke′

b†kh
with ke + ke′ + kh = Ki. Along with Ki, we

have to introduce two other momenta k and p. Let us
write the carrier momenta ke, ke′ , kh in terms of these
three new momenta as

ke = beKi + cek + dep ,

ke′ = be′Ki + ce′k + de′p,

kh = (1 − be − be′)Ki − (ce + ce′)k − (de + de′)p. (57)

The above equations already contain the fact that ke +
ke′ + kh = Ki. If in addition, we enforce the k.Ki and
p.Ki terms to disappear from εe(ke) + εe(ke′ ) + εh(kh),
we get be = be′ = βe so that 1 − be − be′ = βh. If we also
enforce the k.p term to disappear from this sum, we get

cede + ce′de′

me
+

(ce + ce′)(de + de′)
mh

= 0, (58)

which is basically similar to equation (15). As for the de-
termination of the two spatial coordinates (r1, r2) which
go along with Rt, we have here again to make an addi-
tional choice in order to determine the two momenta (k,p)
we want to associate to Ki. The a′ = 0 choice we made,
in fact corresponds in momentum space to take ce = 0.
By setting ce′ = 1 = de (which just rescales k and p), we
then find

ke = βeKi + p ,

ke′ = βeKi − αep + k ,

kh = βhKi − αhp − k. (59)

These momenta are exactly those appearing in equa-
tion (56).

We have shown that, within this formulation of the
orbital part of the wave function as given in equa-
tions (28, 32), Pauli exclusion imposes the Φ̄

(ηi)
k,p ’s to verify

equation (35). This equation just follows from the anti-
commutation of the two a†’s in equation (56) (see Fig. 3b).
Indeed the anticommutation gives

T †
ηi,Ki;Si=1,Siz=+1,mi

=

− 1√
2

∑
k,p

Φ̄
(ηi)
k,p a†

k−αep+βeKi,+
a†
p+βeKi,+

b†−k−αhp+βhKi,mi
.

(60)

So that, if we call a†
p′+βeKi

the first a† and
a†
k′−αep′+βeKi

the second a†, the prefactor becomes

Φ̄
(ηi)
p′+αe(k′−αep′),k′−αep′ . We thus see that equation (35)

just enforces this prefactor to stay unchanged under the
a† anticommutation. Condition (35) then becomes much
clearer.

2.3 Third formulation of the X− trion operator
in terms of one exciton and one electron

A brute force calculation using once more equation (53)
shows that the trion orbital wave function given in equa-
tions (28, 37) can be recovered from the trion operators
(see Fig. 2c),

T †
ηi,Ki;Si=1,Siz=±1,mi

=
1√
2

∑
ν,p

Φ̃(ηi)
ν,p a†

p+βeKi,± B†
ν,−p+βxKi;±,mi

, (61)

T †
ηi,Ki;Si=(1,0),Siz=0,mi

=

1
2

∑
ν,p

Φ̃(ηi)
ν,p

[
a†
p+βeKi,−B†

ν,−p+βxKi;+,mi

− (−1)Si a†
p+βeKi,+

B†
ν,−p+βxKi;−,mi

]
, (62)

where the operator B†
ν,Q;s,m is the usual creation operator

of an exciton with total momentum Q and exciton relative
motion wave function |xν〉,

B†
ν,Q;s,m =

∑
p

〈p|xν〉 a†
p+αeQ,s b†−p+αhQ,m. (63)

Before going further, let us note the similarity be-
tween the exciton creation operator (63) and the trion
creation operator (61): The total momentum Q or Ki is
in both cases split between the electron and the hole or
the electron and the exciton according to their masses,
namely αe = me/(me + mh) and αh = mh/(me + mh)
for the exciton, while βe = me/(2me + mh) and βx =
(me + mh)/(2me +mh) for the trion. For the trion opera-
tor, there is however an additional ν index in equation (61)
when compared to equation (63), as the excitons are char-
acterized by (ν,Q), while the holes are characterized by p
only.
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It is in fact possible to transform equation (56) into
equation (61) by using

a†
ke,sb

†
kh,m =

∑
ν

〈xν |αhke − αekh〉B†
ν,ke+kh;s,m, (64)

which is easy to check from equation (63). If we take for
a†
ke,s the second a† of equation (56), we then get

T †
ηi,Ki;Si=Siz=1,mi

=
1√
2

∑
ν,p

a†
p+βeKi,+

B†
ν,−p+βxKi;+,m

∑
k

〈xν |k〉 Φ̄
(ηi)
k,p , (65)

which is nothing but equation (61), if we use the relation
(44) between the Φ̄’s and the Φ̃’s. A similar transformation
can be done for the other (Si, Siz)’s.

We can note that equation (61) also reads (see Fig. 2d),

T †
i;Si=1,Siz=±1 =

1√
2

∑
n,k

Ψ̃
(i)
n,k a†

k,± B†
n;±,m, (66)

where the trion index i stands for (ηi,Ki) and the exciton
index n stands for (νn,Qn) ; the prefactor Ψ̃

(i)
n,k deduced

from equation (61) is equal to

Ψ̃
(i)
n,k = δKi,k+Qn

∑
k′

〈xνn |k′〉 Φ̄
(ηi)
k′,k−βeKi

= δKi,k+QnΦ̃
(ηi)
νn,k−βeKi

, (67)

which is nothing but equation (48), due to equation (44).
We can also recover the (re ↔ re′ ) symmetry condition

imposed by Pauli exclusion on the Ψ̃
(i)
n,k’s, as given in equa-

tion (50) (see Fig. 4a): Indeed, by “opening” the exciton of
equation (66) into (e, h) pairs according to equation (63),
we get

T †
i;Si=1=Siz

=
1√
2

∑
p,k,νn,Qn

Ψ̃
(i)
n,k 〈p|xνn〉 a†

k,+ a†
p+αeQn,+ b†−p+αhQn,m.

(68)

If we now anticommute the two a† and form the exciton
with a†

k,+ b†−p+αhQn,m according to equation (64), we find

T †
i;Si=1=Siz

=

− 1√
2

∑
p,k,νn′ ,νn,Qn

a†
p+αeQn,+ B†

νn′ ,k−p+αhQn;+,m

× 〈xνn′ |αhk − αe(−p + αhQn)〉 〈p|xνn 〉 Ψ̃
(i)
n,k, (69)

which also reads

T †
i;Si=1=Siz

=
1√
2

∑
n′,k′

Ψ̃
(i)
n′,k′ a†

k′,+ B†
n′;+,m, (70)

Fig. 4. The invariance relations (43) and (50) come from the
possible change of electron when making the exciton.

if we set

Ψ̃
(i)
n′,k′ =

−
∑
n,k

δk+Qn,k′+Qn′ 〈xνn′ |k−αeQn′〉 〈k′−αeQn|xνn〉 Ψ̃
(i)
n,k,

(71)

which is nothing but equation (50) (with (n,k) ↔
(n′,k′)). A similar procedure allows to get the invariance
relation (43) between the Φ̃

(ηi)
ν,p (see Fig. 4b). We thus see

that, in all cases, the conditions imposed by the (re ↔ re′)
symmetry which results from Pauli exclusion is nothing
but the invariance of the prefactors of the trion creation
operators under the possible anticommutation of the two
electron operators.

3 Conclusion

We have reconsidered the X− trion in first quantization
from scratch, paying particular attention to the various
possible “good” choices of coordinates which make them
independent, and to the resulting symmetry conditions
imposed by Pauli exclusion between the two electrons.

In a second part, we have written various possible
trion creation operators. The last formulation (Eq. (66))
in terms of exciton and electron is the most convenient one
for future works on interacting trions: It allows to put the



320 The European Physical Journal B

problems on trions into the general framework of interact-
ing excitons for which we have recently developed a “com-
mutation technique” [22,23] which allows to take exactly
into account the close-to-boson character of the excitons
induced by Pauli exclusion between their carriers.

We wish to thank O. Betbeder-Matibet, B. Roulet and D.
Rodichev for their help.
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